Legislating for Security in Consumer IoT

Copper Horse CEO, David Rogers discusses today’s UK government announcement on legislation for consumer IoT security.

Today marks another step along the road for IoT security – the teeth of legislation and regulation to deal with companies that do not implement security in their consumer IoT products. It is likely that the UK will become the first country in the world to legislate on IoT security.

In May 2019, the UK government launched a consultation into regulation for the security of consumer IoT. The consultation is now complete, with 49 responses and a decision to move ahead with legislating for the top 3 items from the Code of Practice for Consumer IoT Security and ETSI TS 103 645 (pdf). Work is ongoing to bring the ETSI TS to a full European Standard or EN – the draft EN is currently out for review (pdf) until the end of February with National Standards Organisations.

For everyone, the time to act is now

From a personal perspective, I really think this is a huge step. Over the past couple of years I’ve been privileged to work with a fantastic team at DCMS and the NCSC who have been really motivated to help people and understand the problem space. The consumer support for legislation is there and we know that security can be implemented by manufacturers because some companies are already doing it and the security technology is available to be used. We already knew what good looked like – we just wrote it down and prioritised it. What we’ve seen is support from a number of countries and organisations and a recognition that acting now to address the fundamental security concerns is the right way forward.

We also know to a certain extent what the real situation is like in the market. In 2018, we conducted research on behalf of the IoT Security Foundation which showed that fewer than 10% of the manufacturers we surveyed had any way for a security researcher to contact them. The results of our follow-up survey are out this quarter and will reflect a broadly similar situation. Security by design is a concept that some companies choose to ignore because they think that they can get away with it or it doesn’t matter. Well, if you want to ship products to the UK in the future, you had better get your act together pretty quickly.

Considerations

One of the things that I think we need to be aware of is the danger of penalising ‘good’ manufacturers, rather than the rogue ones. I’ve seen this before with work I’ve done against counterfeit and so-called ‘sub-standard’ electronic products. Some measures that are proposed against counterfeit only increase the cost for the ones who will abide by the rules anyway, while the rogue ones get away with continuing to do nothing. In this case, I think we have the balance right. The measures being put forward are a foundational baseline, these are things that are really fundamental, but if not implemented can cause huge consumer harm. Default passwords in consumer devices in this day and age are well, pretty stupid when there are better, safer alternatives for enrolling users to devices and for initiating products from factory defaults. What we’re also asking for is transparency:

  • in access – for security researchers who want to report vulnerabilities to manufacturers easily and;
  • about the minimum length of time that devices will get security updates.

Both of these areas will serve to demonstrate a responsible, public commitment by manufacturers to addressing and resolving discovered security issues. Primarily, manufacturers should be honest towards consumers.

Last year when we created our mapping website, https://iotsecuritymapping.uk , we set out to both help manufacturers to understand how the UK’s Code of Practice mapped to the existing body of work and guidance on IoT security and privacy but also to provide some reassurance that what we were saying was not unusual – in fact, there was a broad consensus on what we were recommending, the fragmentation was really just in the semantics of how documentation from across the world was written. We made that available as open data precisely to help in the process of defragmentation and facilitation of common understanding. The decision by DCMS to translate the Code of Practice into multiple languages reduced the barrier to entry and understanding and acknowledged the truly global nature of both the electronics and software supply chain as well as the designers, security experts and security researchers across the world.

Next steps

The next few months are going to be hard work. My own anxiety is that there will also always be edge cases – those points at which adjustments need to be made or possibly where we haven’t considered certain use cases. I’m certain that the team working on it are conscientious and will work to understand manufacturer concerns and the feedback from the public consultation. Ultimately in all of this, we have had a choice – sit on our hands and wait for things to get worse or get on do something and make the world a safer place. We chose action over procrastination.

More reading on this topic:

ETSI publishes European Standard on Consumer IoT Security


David Rogers writes about the launch of the specification: ‘Cyber Security for Consumer Internet of Things’ from ETSI’s TC Cyber group.

Today the European Telecommunications Standards Institute (ETSI) announced the publication of their ETSI Technical Specification, TS 103 645 (pdf).

This work builds on the UK Code of Practice for IoT Security and has had input from experts around the world. It is great that this work has been elevated up to European level and published as a standard. This means a much wider technical audience and crucially, official endorsement at European level by companies and governments.

The discussions during the specification development were very rational and it also meant that some of the supporting text were promoted into provisions within the specification, making the overall work stronger. For example, wording that could be considered ambiguous from a technical standpoint has been clarified and considered at length by me and others. This means that whilst we still see this as a high level specification, we’ve also tried to further pin down what we’re trying to say, all whilst trying to ensure that we avoid unintended consequences and companies deliberately trying to avoid putting security into their products via loopholes.

These efforts will continue. During the specification process, there were some really good proposals brought forward on some deep technical aspects about IoT security and privacy that we see as being potential spin-off work items in ETSI – I’m keeping track of what those topics were. There are also things that some of us would like to bring into the Code of Practice for future revisions, such as consideration by manufacturers of issues such as coercive or controlling behaviour which can be compounded by IoT in the home. All these things are for the future, but the great thing is the enthusiasm is there from some brilliant minds both in government and industry, so watch this space!

The IoT Security Mapping site has also been updated to reflect how the ETSI specification maps to the UK Code of Practice in order to help implementers understand how it all fits together, including against other recommendations and specifications from around the world.

Mapping IoT Security and Privacy Recommendations and Guidance

 

The UK’s work on consumer IoT security and privacy, led by the Department for Digital, Culture, Media & Sport (DCMS) has been continuing since the publication of its work on Secure by Design and the Code of Practice for Consumer IoT Security went out for public comment in March 2018. Our team has been working on mapping IoT security and privacy guidance to the Code of Practice and we’re now launching https://iotsecuritymapping.uk to support the initiative, including hosting open data files with all the various mappings contained within.

 

 

We believe this is going to be really helpful for so many companies and organisations involved in IoT. It will help to defragment the standards space and it will help companies to understand how to improve security by telling them which recommendations facilitate implementation of the UK’s Code of Practice.

 

You can read our CEO’s blog on this topic here.

How the UK’s Code of Practice on IoT security would have prevented Mirai

 

The UK’s report on Secure by Design was released today after a significant amount of work from some of the best minds in government, academia and industry. This is one of the first major steps in the world by a government towards eliminating some of the bad practices that have plagued connected devices and services for many years.

 

 

 

Copper Horse’s CEO, David Rogers was the author of the UK’s Code of Practice for Security in Consumer IoT and services as part of its report on Secure by Design, in collaboration with DCMS, the NCSC, industry and academia. Here, David discusses how one of the major attacks on IoT, a botnet called Mirai, would have been prevented and its successors neutralised.

 

Security of devices and services is never just about one single measure. By building strength-in-depth, an attacker will find it extremely difficult to execute a successful, persistent attack that can affect millions of IoT devices.

 

Taking the infamous IoT botnet Mirai as an example, the Code of Practice provides multiple layers of protection against this attack, including the following:

 

1. Elimination of default passwords (guideline number 1) – Mirai used a list of 61 known default username and password combinations, encompassing millions of devices. Had these passwords been unique Mirai could not have worked.
2. Software updates (guideline number 3) – Many of the Mirai devices either were out-of-date with their patching or simply couldn’t be patched at all. This means that the spread of Mirai could not easily be halted. Had software patching been in place, devices could both be immunised and fixed. Most importantly, regular patching also protects against future variants of attack that exploit other vulnerabilities, neutralising their effect.
3. By following guideline number 6 in the Code of Practice on “Minimising exposed attack surfaces”, vendors would have prevented Mirai because the port it used to attack the devices would have been closed and therefore inaccessible. This is a good demonstration of the principle of “secure by design”.
4. Ensuring software integrity (guideline number 7) would have prevented arbitrary, remote code execution and support preventing things like authentication bypass issues. With no access to run code even if Mirai could have accessed a device, it couldn’t have done anything.
5. Designing a system to be resilient to outages (guideline number 9) means that if it is the victim of an attack like Mirai, key services will continue to operate, severely limiting the effect of the attack until it is dealt with.
6. Having a vulnerability disclosure policy (guideline number 2) allows these types of issues to be reported to vendors by security researchers and then subsequently addressed, prior to malicious exploitation. We want to ensure that vendors get the information about vulnerabilities from the good guys first.

 

You can see that design measures, if implemented can create the foundations that will reduce exposure to such attacks, allow pre-emptive protection for products once an attack is out in the wild and allow a response to an attack that is ongoing, whilst keeping users secure.

 

Security is a very difficult subject and there is no panacea to the security of devices, given that you are almost always dealing with an active adversary (sometimes clever automation in the form of AI and machine learning). This is why like many, I believe that the topic of security is more art than science.

 

In approaching this piece of work, we never set out to achieve a remedy for all ills because it simply isn’t possible. What we did do was take a long hard look at what the real problems are and what solutions need to be in place. Industry has already come a long way; a lot of vendors and service providers are doing a huge amount to make things more secure. Just look at the work of GSMA’s IoT guidelines which is now being adopted across the world, or the work of the IoT Security Foundation, or any of the following.

 

There are still a lot of vendors and startups who need a guiding hand or who wilfully ignore security for various reasons. This includes mobile applications controlling IoT devices which are often over-permissioned or which don’t implement internet encryption correctly. We looked at measurable outcomes. How would a retailer be able to check whether something was insecure? What things are easily testable by a consumer group? If someone tries to put something into a major retail outlet that is insecure, could it be caught before it was sold? In the future, would an organisation like Trading Standards be able to identify insecure devices easily? My own view is that we should be able to flush out the bad stuff from the system whilst encouraging innovation and enabling businesses to make IoT that is secure, privacy respecting and convenient for users.

 

Additional thoughts are on David’s blog: A Code of Practice for Security in Consumer IoT Products and Services